МИПИСТЕРСТВО ЭПЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ СССР ГЛАВИНИПРОЕКТ

ВСЕСОЮЗНЫЙ ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ НАУЧНО-ИССИЕДОВАТЕЛЬСКИИ ИИСФИТУТ ГИДРОТЕХИИКИ имени Б. Е. ВЕДЕНЕЕВА

ИНСТРУКЦИЯ М2 ПО ОПРЕДЕЛЕНИЮ ПРОЧНОСТИ БЕТОННЫХ СООРУЖЕНИЙ

BCH 02-74
Minimispra CCCP

.ЭНЕРГИИ: Ленииградскоо отлоление 1974 В работе изложена новая методика расчета бетонных сооружений основаниям на учете длительной прочности и вида сложного напраженного состояния бетона. Пиструкция рассчитана на проектировщиков и строителей гидрогехнических сооружений.

Предпагаемым методом расчета можно пользоваться не только при проситировании бетопизу гидротехнических соо-

ружений, но и сооружений другого назначения.

Работа выполнена Комплексной лабораторней бетониях и железобетонных сооружений ВППП им. В. Е. Велепсена. Отретственный исполнитель работы — ст. науч. согр., каил. техн. науч. А. П. Пак.

МИНИСТЕРСТВО ЭНЕРГЕПИКИ И ЭЛЕКТРИФИКАЦИИ СССР

Ведоиственные строительные пормы

Инструкция по определению прочности бетонных сооружений

BCH 02-74 Ministepro CCCP

> пенатается Виеринае

т общие положения

- 1.1. Пастоящая Инструкция развивает и дополняет положения ип. 13, 4.2, 4.3, 4.15 главы СПиИ П-П 14—69 «Бетоиные и железобетонные конструкции гидротехнических сооружений Пормы проектирования» и распространяется на вроектирование бетонных гидротехнических сооружении, материал которых иснытывает в основном сложное напряженное состояние.
- 1.2., Указания настоящей Пиструкции в соответствии с главой СПиП, И-А 10—71 «Строительные конструкции и основания. Основные, положения проектирования относятся к предельным соетояниям первой группы.

2.. ОСНОВНЫЕ РАСЧЕТНЫЕ ПОЛОЖЕНИЯ

- 2.1. Папряжения, возинкающие в элементах бегонных сооружений, разрешается определять так же, как для однородного упругого тела. Напряженное состояние основных сооружений следует показывать в главных напряжениях $\sigma_1 > \sigma_2 > \sigma_3$ (где σ_1 наибольшее главное напряжение σ_2 среднее главное напряжение и σ_3 наименьшее главное напряжение). Растягивающие напряжения считаются положительными.
- 2.2. Бегонные сечения могут рассчитываться с счетом или без учета работы растянутой зоны сечения. В первом случае следует производить проверку трещиностойкости растянутой зоны сечения согласно требованиям главы СПиП П-П 14—69. При этом должны учитываться как влияние температурно-влажностных воздействий, так и влияние сложного напряженного состояния на момент образования трешии
- 2.3. Расчеты прочности и грещиностойкости бетонных сооружений наряду с методами, регламентированными главой СПиП ПП 14—69, в случаях, предусмотренных индиридуальными техническими условиями на проектирование отдельных сооружений должны производиться по величие длительной, прочности бетона, определяющей предельно допустимые напряжения на стадии пормальной эксплуатации сооружеции.

Виссены Всесоюзным паучно-
исследовательским институтом
тидрогехники им. Б. Е. Веденеева

Утверждены Минэнерго СССР 28 июня 1971 г. но сціласованню с Госстроем СССР

Срок предення IV крартал 1974 с. Примечэние. Длительная прочность бетона характеризуется уровнем напряжений, при превышении которых в бетоне начинаются необративное структурные изменения и соответственно начинают изменяться (ухудшаться) его характеристики — водонепроницаемость, моролостойкость, сопротивление, различным видам коррозии и т. д. Длительная прочность бетона определяется экспериментальными исследованиями ири помощи современных измерительных приборов и приспособлений — ультразвуковых, лаукометрических, тензометрической аннаратуры, фильтрационных установок, метода дилатометрии и т. и Величия длительной прочности должна устанавливаться с использованием чинимум трех различиых методов, при этом в расчетах принимается се среднее значение.

- 2.4. Значения длительной прочности бетона при расчете бетоных сооружении устанавливаются опытным путем с учетом статистической изменчивости сопротивлений. При назначении обеспеченности величины длительной прочности бетона следует руководствоваться указаниями примечания 1 и 13 главы СПиП П-А. 10—71.
- 2.5. На стадии технического проекта допускается принимать величину длительной прочности бетона по таби. 1, 2.

Fаблица IДлятельная прочность бетона при Сжатин $R_{\epsilon,\alpha}$, $\kappa_2 \epsilon_i' \epsilon_i x^2$

Проектная марка бетопа по прочности при сжатин	100	150	(א)2	250	.3(X)	:150	4(X)	500
Rc.1	:35	50	ชีวี	51)	1(X)	120	110	175

Приметация. 1. Для сооружений 1 и II классов капитальности при растегал на прочность допускается учитывать реальный возраст бетона к моженту его загружения. 2. Классы капитальности гидротехнических сооружений устанавливаются в соотретствии с требованиями главіл СПиП II-II. $1\!-\!62^{\star}$. Гиаротехнические сооружения речиме. Основные положения про-ектирования .

. Таблица 2 Длительная прочность бетона при растяжении $\mathcal{R}_{\mathfrak{p},\mathfrak{p}}$, кас см 2

	Contensante narpy you	Провитияя марка бетона по прочинсти при съвятии							
Класс	и воздействин	100	150	200	250	1(%)	350	11.0	520
1	Основное	8.2	11,2	13.5	15.0	17,2	18,7	20 2	2 J
	Особае	10,5	11,2	17,1	19,0	21,8	23,8	25,6	29
ΙΙ	Основное	8,8	12,0	14,4	16.0	13,4	20.0	21,6	21
	Особое	11,0	15,0	18,0	20,0	23,0	25.0	27.0	31
111	Основное	9.9	13,5	16.2	18,0	20.7	22,5	21,3	27
	Особое	11,0	15,0	18,0	20,0	23.0	25,0	27,0	.11
ΙV	Основное	10,5	11,2	17.1	19,0	21,8	23,8	25,6	28)
	Особою	11,0	15,0	18,0	20,0	23,0	25.0	27,0	J1

2.6 Для определення предельно допустимых напряжений па стадии пормальной эксплуатации при расчете бегонных сооружений в формулы, приведенные в разделах 3 и 1 следуел-вводить $K_{\text{fig}} = \kappa o \Rightarrow \phi \phi$ иниент безопасности по длительной прочности безопа, учитывающий ответственность сооружения. Значения ко $\Rightarrow \phi \phi$ иниента K_{fig} , приведены в табл. З

Таблица Коэффициент безопасности по длительной прочности бетона

К 13сс канитальности сооружений		1	II, III, IV			
posjenciann (o retanne Lach? sok n	Основное	Особос	Основное	Ocaoos		
коэффициент Къх	1,2	1,0	1,1	0,9		

Примечание Коэффицивнты $K_{6,1}$ при учете сит, действующих во время строительство испытании и ремоита соор, жении, принимаются ров ими среднеарифмети тескому между опачениями коэффициентов для основ иму и особых сочетании нагрузок и воздействий. При учете исобых сочетании в строительным и ремонтими период коэффициенты $K_{6,1}$ принимостья по графе особых гочетаний изгрузок и воздействии.

27 Расчеты ветонных сооружений на прочность и по образованию трещии должны производиться с учетом вида сложного напряженного состояния бетона и с использованием различных критернев прочности по зонам сооружения

В РАСЧЕТ ЭЛЕМЕНТОВ БЕТОННОГО СООРУЖЕНИЯ ПО ПРОЧНОСТИ

Иннейное напряженное состояние

3.1 Прочность бетониых элементов, определяемая сопротивтением осевому сжатию должив удовлетворять следующему условию

$$\P_3 \leqslant \sigma_9 = \frac{R_{CT}}{K_{6.1}},\tag{1}$$

гае з — предельно допустимые напряжения на стадия нормальной экспауатации соору кения

3.2 При расчете центрально сжатых бетонных элементов не обходимо учитывать продольный изгиб, когда гибкость их (г е отношение расчетной длины элемента l_0 к минимальному радиусу инерции г сечения) больше или равна H В этом случае расчет ведется по формуле.

$$\epsilon_3 < \epsilon_4 = \frac{R_{\text{CT}}}{h \epsilon_4} \varphi \tag{2}$$

тте $\frac{1}{4}$ — коэффициент продольного изгноа, принимпечени по таблице 17 и 61 глачи СПиП ПП 11 69

Примечание Расчетная длича / принимается в соответствии с требоваинями и 62 главы СПиП II II 14—69

- 3.3. Определение прочности внецентренно сжатых бетонных сечений, и которых согласно и 2.2 не учитывается сопрозналение растянутой зоны, производится по результатам сравнения величин наибольших главных сжимающих папряжении с величной длигельной прочности бетона при сжатии; при этом должно быть соблюдено условие (1).
- 3.4. Во всех случаях проектирования напорных бетонных сооружений, рассчитываемых как с учетом, гак и без учета работы растинутои зоны бетона, необходимо учитывать в расчет ном сечении элемента силы прогиводавления воды, определяемые в соответствии с требованиями ип. 4.12, 4.13, 4.14 главы СПиП II-II. 14—69.

Плоское напряженное состояние

3.5. Бетонные элементы, материал которых испытывает двухосное сжатие, рассчитываются по формуле:

$$z_1 \leqslant \sigma_3 = \frac{R_{\mathfrak{C},\Upsilon} + n \mid \sigma_2^- \mid}{K_{\tilde{\mathfrak{G}},\Lambda}},\tag{3}$$

где $|z_1|$ — абсолютное значение среднего главного напряжения; $a \to 3$ чин-рический коэффициент, определяемый ис указаниям и. 3.7.

Облемное наприженное состояние

3.6. Бетонные элементы, материал которых испытывает трехосное сжатие, рассчитываются по формуле:

$$z_{1} < z_{3} = \frac{R_{c,\tau} + a(|z_{2}| - |z_{1}|) + b|z_{1}|}{K_{6,1}}, \tag{1}$$

гле $\{z_i\}$ — абсолютное значение наибольшего главного напряжения, устанавливаеное с учетом указаний и. 4.1; b — эмпирический коэффициент, определяемий по указаниям и. 3.7.

3.7. Величины коэффициентов а н b в формулах (3) н (4) должны быть определены специальными исследованиями на бетоне конкретного для проектируемого сооружения состава. Для прикидочных расчетов их значение может быть принято равным:

$$a = 0.1$$
; $b = 2.5$

4 РАСЧЕТ ЭЛЕМЕНТОВ БЕГОИНЫХ СООРУЖЕНИИ ПО ОЯРАЗОВАНИЮ ТРЕЩИИ

4.1. Грещиностойкость бетонных элементов, материал которых испытывает осевое или двухосное растяжение, определяется длигельной прочностью бетона на растяжение и должиа удовлять следующему условию:

$$\sigma_1 < \sigma_2 = \frac{R_{p-1}}{K_{6,2}}.\tag{5}$$

4.2. Трещиностойкость бетонных элементов, материал которых испытывает плоское напряженное состояние вида растяжение—сжатие, должна определяться следующим условием:

$$\sigma_1 < \sigma_2 = \frac{R_{p,\tau}}{\Delta_{0,1}} \cdot \frac{R_{p,\tau}}{R_{CT}} |\sigma_1| \tag{6}$$

4.3. Трешиностойкость бегопинух элементов, материал которых испытывает объемное плириженное состояние вида расгижение илют для сжатия, рассчитывается с соблюдением условия:

$$a_1 = a_2 = \frac{R_{p-r}}{K_{6-1}} - \frac{R_{p-r}}{R_{c-r}} |a_1| + \frac{a}{K_{6-1}} \frac{R_{p-r}}{R_{c-r}} |a_2|$$
 (7)

- 4.4. Грещиностопкость бетонных элементов, материал которых испытывает объемное напряженное состояние вида два растяжения илюс сжатие, рассчитывается с соблюдением условия (6).
- 4.5. В случаях, когда по одной из главных площадок действует растягивающее напряжение и условия трещиностойкости (см. формулы 5. 6, 7) не выполняются, в сооружении должны быть предусмотрены специальные конструктивные мероприятия (швы надрезы, периметральный шов, армирование и т. п.).

Примечание. Величины $R_{p,\tau}$ в сечениях, совнадвющих со швами бетонирования, следует принимать ранными $\frac{R_{p,\tau}}{2}$ или определять специальными экспериментами на образиах вечением не менсе 0.5×0.5 и.

содержание

1. Общие полижения		
2. Основные расчетные в	положения	3
3. Расчет элементов бего	ниых сооружении по прочности	5
Инисаное пларяжени Илоское наприжени Объемиое пларижени	ος ευστοπίτις	5 6 6
	ных сооруждини по образованию трешин	G

опивалячно он выплучтэни Иниэкучооо хыннотва итэонро**чн**

> <u> ПСП 02-74.</u> Минэисрго СССГ

Редакторы: М. З. Левина, А. А. Гайдина

Техимисский редактор Г. М. Боличели

Ленипградское отделение издательства. Энергия), 192041, Ленипград. Марсопо поле, 1.

Слано в набор 12:VIII 1974 г. Полинсано к пенали 2/XII 1971 г. М-23098. Формат (9)::180/15. Бумата типографская Га П. Пен. п. 0,5. Уп.-илд. об 0.55. Тираж 600. Захад 382. Цена 01 коп.

Гипоприфия Вексоманого
Ордена Трудового Красного Значени
пручно-исследовательского
института гиароголинки
инени В. Е. Веленесол.
191220, Изиниград, Гистевал ун., 21